Vascular endothelial growth factor and its receptors in embryonic zebrafish blood vessel development.
نویسندگان
چکیده
There is intense interest in how blood vessel development is regulated. A number of vascular growth factors and their receptors have been described. The vascular endothelial growth factor (VEGF) and its receptors are major contributors to normal mammalian vascular development. These receptors include VEGFR-1, VEGFR-2, VEGFR-3, neuropilin-1 (NRP1), and NRP2. The function of these genes have been determined to some degree in mouse gene targeting studies. These knockouts are embryonically lethal, and early death can be attributed in part to lack of normal blood and lymphatic vessel development. More recently, it has been demonstrated that zebrafish are an excellent model for studying the genes and proteins that regulate embryonic vascular development. Zebrafish have a number of advantages compared to mice, including rapid embryonic development and the ability to examine and manipulate embryos outside of the animal. In this review, we describe some of the earlier mouse VEGF/receptor functional studies and emphasize the development of the zebrafish vasculature. We describe the zebrafish vasculature, zebrafish VEGF and VEGF receptors, advantages of the zebrafish model, resources, and methods of determining growth factor and receptor function.
منابع مشابه
Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...
متن کاملFlt-1 (vascular endothelial growth factor receptor-1) is essential for the vascular endothelial growth factor-Notch feedback loop during angiogenesis.
OBJECTIVE Vascular endothelial growth factor (VEGF) signaling induces Notch signaling during angiogenesis. Flt-1/VEGF receptor-1 negatively modulates VEGF signaling. Therefore, we tested the hypothesis that disrupted Flt-1 regulation of VEGF signaling causes Notch pathway defects that contribute to dysmorphogenesis of Flt-1 mutant vessels. APPROACH AND RESULTS Wild-type and flt-1(-/-) mouse e...
متن کاملVegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development.
Vascular endothelial growth factors (VEGFs) control angiogenesis and lymphangiogenesis during development and in pathological conditions. In the zebrafish trunk, Vegfa controls the formation of intersegmental arteries by primary angiogenesis and Vegfc is essential for secondary angiogenesis, giving rise to veins and lymphatics. Vegfd has been largely thought of as dispensable for vascular devel...
متن کاملDetermination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy
The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...
متن کاملVASCULAR BIOLOGY Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway
Our previous work has shown that axon guidance gene family Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro. To investigate NogoB-NgBR function in vivo, we cloned the zebrafish ortholog of both genes and studied loss of function in vivo using morpholino antisense technology. Zebrafish ortholog of Nogo-B is expressed in somite while expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current topics in developmental biology
دوره 62 شماره
صفحات -
تاریخ انتشار 2004